The Harmonic Green Function for a Right Isosceles Triangle

${ }^{1}$ Anas. M. Qr, ${ }^{2}$ Abd Albasset. Younso, ${ }^{3}$ Hasan. Baddour
${ }^{1}$ Department of mathematics, Tishreen University, Lattackia, Syria
${ }^{2}$ Department of mathematics, Tishreen University, Lattackia, Syria
${ }^{3}$ Department of mathematics, Tishreen University, Lattackia, Syria

Abstract: in this paper, we have constructed the harmonic green function for a right isosceles triangle in the complex plane, by using the reflections over it segments providing parqueting to the complex plane.

Keywords: complex plane, elliptic functions, green function, parquetting, reflection, right triangle.

1. HARMONIC GREEN FUNCTION FOR A REGULAR DOMAIN

The harmonic green function for a regular domain D (bounded domain) is the fundamental solution of the inhomogeneous Laplace's equation $\Delta u=f$ where
$f \in L_{p}(D, \mathbb{C}), 2<p$ with vanishing values on the boundary, there are three different methods to find the harmonic green function,
the first one by using conformal invariance $w: D \rightarrow \Omega$ [1] that maps the domain D to another domain Ω that we already know the harmonic green function in it $G_{1 \Omega}$, hence

$$
G_{1 D}(z, \zeta)=G_{1 \Omega}(w(z), w(\zeta)) .
$$

The second method by solving the Schwarz problem for analytic functions, [1] where the Schwarz kernel of the domain D must be found to solve the Schwarz problem and obtain the harmonic green function of the domain D.

The last method by using reflections along the boundary of the regular domain D, this method is effective to get the harmonic green functions for some domains that can provide a parqueting for the complex plane or circular arcs as half circle, ring and half ring [2], etc.

The principal of this method starting with a fixed point $\zeta \in D$ and a vary point
$z \in D \backslash\{\zeta\}$, we begin to reflect z along the borders of D having an elliptic function $B(z, \zeta)$ with the double periods

$$
\Omega_{m, n}=m w_{1}+n w_{1} .
$$

Where $w_{1}, w_{2} \in \mathbb{C}$ and $\frac{w_{1}}{w_{2}} \notin \mathbb{R}, m, n \in \mathbb{Z}$
It turns out that the harmonic green function for D is $\log |B(z, \zeta)|^{2}$.
See [1] for a strip $S=\{z \in \mathbb{C} ; 0 \leq \operatorname{Imz} \leq \pi\}$ and a rectangle, [3] for equilateral triangle, and [4] for the quarter ring and half hexagon.

Notice that if the elliptic function represented as an infinite product we have to proof the convergence.

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com

2. THE RIGHT ISOSCELES TRIANGLE

To construct the harmonic green function $G_{1}(z, \zeta)$ for the triangle T with the corners $0,1, i$, we start to reflect T over its three segments and continuing to reflect the resulting triangles over its segments having a parqueting to the complex plane.

Figure 1

Let $\in T$, reflecting z at the segment from 1 to i gives

$$
z_{1}=-i \bar{z}+1+i
$$

So the reflection of T at the segment from 1 to i gives the triangle T_{1}
with the corners $1,1+i, i$.
Reflecting z at the segment from i to 0 gives

$$
z_{3}=-\bar{z}
$$

So the reflection of T at the segment from i to 0 gives the triangle T_{3}
with the corners $0, i,-1$.
Reflecting z_{3} at the segment from i to -1 gives

$$
z_{2}=-i z-1+i
$$

So the reflection of T_{3} at the segment from -1 to i gives the triangle T_{2}
With the corners $-1-i, i,-1$.
By continuing we obtain the points

$$
\begin{gathered}
z_{4}=-i z+1+i, \\
z_{5}=-\bar{z}+2, \\
z_{6}=-i \bar{z}-1+i, \\
z_{7}=z-2 .
\end{gathered}
$$

Reflecting the eight points at the real axis we get the points

$$
\bar{z}, \overline{z_{1}}, \overline{z_{2}}, \overline{z_{3}}, \overline{z_{4}}, \overline{z_{5}}, \overline{z_{6}}, \overline{z_{7}} .
$$

Remark: all of the obtained points is a result from the point, after applying suitable rotation and shifting.
Denoting $\Omega_{m, n}=2 m+2 n i, m, n \in \mathbb{Z}$.
We can express any point of the complex plane \check{z} by using one of the points

$$
z, z_{1}, z_{2}, z_{3}, \bar{z}, \overline{z_{1}}, \overline{z_{2}}, \overline{z_{3}} .
$$

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com
With a proper shifting $\Omega_{m_{0}, n_{0}}$, that gives
$\check{z}=z_{k}+\Omega_{m_{0}, n_{0}} \quad$ or $\quad \check{z}=\overline{z_{k}}+\Omega_{m_{0}, n_{0}} \quad ; 0 \leq k \leq 3, z=z_{0}$.
So we get the following elliptic function

$$
B(z, \zeta)=\prod_{m, n \in \mathbb{Z}} \frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}}
$$

where z is a variable point in D and $\zeta \in D$ is fixed.
Remark: we can see that z and every direct reflection of \bar{z} to all directions makes a simple poles for the function $B(z, \zeta)$.
Similarly, \bar{z} and every direct reflection of z to all directions makes zeros for the function $B(z, \zeta)$,see [5], hence
$G_{1}(z, \zeta)=\log |B(z, \zeta)|^{2}=\log \prod_{m, n} \in \mathbb{Z}\left|\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}}\right|^{2}$.

Theorem (1):

The function $G_{1}(z, \zeta)$ is the Green function for the right isosceles triangle T satisfying:

- $G_{1}(., \zeta)$ is harmonic in $T \backslash\{\zeta\}$,
- $G_{1}(., \zeta)+\log |\zeta-z|^{2}$ is harmonic in T,
- $\lim _{z \rightarrow \partial T} G_{1}(z, \zeta)=0$,
- $G_{1}(z, \zeta)=G_{1}(\zeta, z)$ for $z, \zeta \in T$,
for any $\zeta \in T$.
The proof of theorem 1 holds in the three following lemmas.
Lemma (1): The double infinite products

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{k}}-\Omega_{m, n}}{\zeta-z_{k}-\Omega_{m, n}}\right|^{2}
$$

converge for $0 \leq k \leq 3$, where $z_{0}=z \in T$.

Proof:

Let $a_{m, n}=\left|\frac{\zeta-\overline{z_{k}}-\Omega_{m, n}}{\zeta-z_{k}-\Omega_{m, n}}\right|^{2}$ then rewriting the double infinite product gives

$$
\prod_{m, n \in \mathbb{Z}} a_{m, n}=a_{0,0} \prod_{m=1}^{\infty} a_{m, 0} \cdot a_{-m, 0} \prod_{n=1}^{\infty} a_{0, n} \cdot a_{0,-n} \prod_{m=1}^{\infty} \prod_{n=1}^{\infty} a_{m, n} \cdot a_{-m, n} \cdot a_{m,-n} \cdot a_{-m,-n}
$$

We have

$$
\prod_{m=1}^{\infty} a_{m, 0} \cdot a_{-m, 0}=\prod_{m=1}^{\infty}\left|\frac{\zeta-\overline{z_{k}}-2 m}{\zeta-z_{k}-2 m} \cdot \frac{\zeta-\overline{z_{k}}+2 m}{\zeta-z_{k}+2 m}\right|^{2}=\prod_{m=1}^{\infty}\left|\frac{\left(\zeta-\overline{z_{k}}\right)^{2}-4 m^{2}}{\left(\zeta-z_{k}\right)^{2}-4 m^{2}}\right|^{2}
$$

The convergence of the last product as the convergence of the series:

$$
\sum_{m=1}^{\infty}\left[\frac{4 m^{2}-\left(\zeta-\overline{z_{k}}\right)^{2}}{4 m^{2}-\left(\zeta-z_{k}\right)^{2}}-1\right]=\sum_{m=1}^{\infty}\left[\frac{\left(\zeta-z_{k}\right)^{2}-\left(\zeta-\overline{z_{k}}\right)^{2}}{4 m^{2}-\left(\zeta-z_{k}\right)^{2}}\right]
$$

And it's convergent.

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com
Similarly

$$
\prod_{m=1}^{\infty} a_{0, n} \cdot a_{0,-n}=\prod_{m=1}^{\infty}\left|\frac{\zeta-\overline{z_{k}}-2 n i}{\zeta-z_{k}-2 n i} \cdot \frac{\zeta-\overline{z_{k}}+2 n i}{\zeta-z_{k}+2 n i}\right|^{2}=\prod_{m=1}^{\infty}\left|\frac{\left(\zeta-\overline{z_{k}}\right)^{2}+4 n^{2}}{\left(\zeta-z_{k}\right)^{2}+4 n^{2}}\right|^{2}
$$

The convergence of the last product as the convergence of the series:

$$
\sum_{m=1}^{\infty}\left[\frac{4 n^{2}+\left(\zeta-\overline{z_{k}}\right)^{2}}{4 n^{2}+\left(\zeta-z_{k}\right)^{2}}-1\right]=\sum_{m=1}^{\infty}\left[\frac{\left(\zeta-\overline{z_{k}}\right)^{2}-\left(\zeta-z_{k}\right)^{2}}{4 n^{2}+\left(\zeta-z_{k}\right)^{2}}\right]
$$

And it's convergent.
On the other hand, we have

$$
\begin{gathered}
\prod_{m=1}^{\infty} \prod_{n=1}^{\infty} a_{m, n} \cdot a_{-m, n} \cdot a_{m,-n} \cdot a_{-m,-n}=\prod_{m=1}^{\infty} \prod_{n=1}^{\infty}\left|\frac{\zeta-\overline{z_{k}}-\Omega_{m, n}}{\zeta-z_{k}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{k}}-\Omega_{-m, n} \zeta-\overline{z_{k}}-\Omega_{m,-n} \zeta-\overline{z_{-m, n}}-\Omega_{-m,-n}}{\zeta-z_{k}-\Omega_{m,-n}}\right|^{2} \\
=\left.\prod_{m=1}^{\infty-z_{k}-\Omega_{-m,-n}}\right|_{n=1} ^{\infty}\left|\frac{\zeta-\overline{z_{k}}-\Omega_{m, n}}{\zeta-z_{k}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{k}}+\overline{\Omega_{m, n}}}{\zeta-z_{k}+\overline{\Omega_{m, n}}} \cdot \frac{\zeta-\overline{z_{k}}-\overline{\Omega_{m, n}}}{\zeta-z_{k}-\overline{\Omega_{m, n}}} \cdot \frac{\zeta-\overline{z_{k}}+\Omega_{m, n}}{\zeta-z_{k}+\Omega_{m, n}}\right|^{2} \\
=\prod_{m=1}^{\infty} \prod_{n=1}^{\infty}\left|\frac{\left(\zeta-\overline{z_{k}}\right)^{2}-\Omega^{2}{ }_{m, n}}{\left(\zeta-z_{k}\right)^{2}-\Omega_{m, n}^{2}} \cdot \frac{\left(\zeta-\overline{z_{k}}\right)^{2}-\overline{\Omega_{m, n}}}{\left(\zeta-z_{k}\right)^{2}-\overline{\Omega_{m, n}}}\right|^{2} \\
\left.\right|^{2} \\
=\prod_{m=1}^{\infty} \prod_{n=1}^{\infty}\left|\frac{\left(\zeta-\overline{z_{k}}\right)^{4}-2\left(4 m^{2}-4 n^{2}\right)\left(\zeta-\overline{z_{k}}\right)^{2}+\left(4 m^{2}+4 n^{2}\right)^{2}}{\left(\zeta-z_{k}\right)^{4}-2\left(4 m^{2}-4 n^{2}\right)\left(\zeta-z_{k}\right)^{2}+\left(4 m^{2}+4 n^{2}\right)^{2}}\right|^{2}
\end{gathered}
$$

converge as

$$
\begin{aligned}
& \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{\left(\zeta-\overline{z_{k}}\right)^{4}-2\left(4 m^{2}-4 n^{2}\right)\left(\zeta-\overline{z_{k}}\right)^{2}+\left(4 m^{2}+4 n^{2}\right)^{2}}{\left(\zeta-z_{k}\right)^{4}-2\left(4 m^{2}-4 n^{2}\right)\left(\zeta-z_{k}\right)^{2}+\left(4 m^{2}+4 n^{2}\right)^{2}}-1\right] \\
= & \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{16\left(m^{2}+n^{2}\right)^{2}-8\left(m^{2}-n^{2}\right)\left(\zeta-\overline{z_{k}}\right)^{2}+\left(\zeta-\overline{z_{k}}\right)^{4}}{16\left(m^{2}+n^{2}\right)^{2}-8\left(m^{2}-n^{2}\right)\left(\zeta-z_{k}\right)^{2}+\left(\zeta-z_{k}\right)^{4}}-1\right] \\
= & \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{8\left(m^{2}-n^{2}\right)\left[\left(\zeta-z_{k}\right)^{2}-\left(\zeta-\overline{z_{k}}\right)^{2}\right]+\left(\zeta-\overline{z_{k}}\right)^{4}-\left(\zeta-z_{k}\right)^{4}}{16\left(m^{2}+n^{2}\right)^{2}-8\left(m^{2}-n^{2}\right)\left(\zeta-z_{k}\right)^{2}+\left(\zeta-z_{k}\right)^{4}}\right]
\end{aligned}
$$

And it convergence.
Lemma (2): The function $G_{1}(., \zeta)$ has vanishing boundary values on ∂T, for $\zeta \in T$.

$$
\lim _{\substack{z \rightarrow z_{0} \in \partial T \\ z \in T}} G_{1}(z, \zeta)=0
$$

Proof:

we have to investigate all of the three segments $\partial_{1} T, \partial_{2} T, \partial_{3} T$:
i. on the segment $\partial_{1} T$ from 0 to 1 , where :
$z=\bar{z}, z_{2}=z_{1}-2, z_{3}=-z$.
That gives

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com

$$
\begin{aligned}
& \frac{\zeta-\bar{z}-\Omega_{m, n}}{\overline{\zeta-z-\Omega_{m, n}}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}} \\
& =\frac{\zeta-z-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{1}}+2-\Omega_{m, n}}{\zeta-z_{1}+2-\Omega_{m, n}} \cdot \frac{\zeta+z-\Omega_{m, n}}{\zeta+z-\Omega_{m, n}} \\
& =\frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{1}}+2-\Omega_{m, n}}{\zeta-z_{1}+2-\Omega_{m, n}} \\
& =\frac{\zeta-\overline{z_{1}}-\Omega_{m-1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-z_{1}-\Omega_{m-1, n}}
\end{aligned}
$$

We have the double product

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-z_{1}-\Omega_{m-1, n}}\right|^{2}
$$

converges, so we can write

$$
\begin{aligned}
& \prod_{m \in \mathbb{Z}}\left|\frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-z_{1}-\Omega_{m-1, n}}\right|^{2}=\lim _{M \rightarrow \infty} \prod_{m=-M}^{+M}\left|\frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-z_{1}-\Omega_{m-1, n}}\right|^{2} \\
= & \lim _{M \rightarrow \infty}\left|\frac{\zeta-z_{1}-\Omega_{M, n}}{\zeta-z_{1}-\Omega_{-M-1, n}}\right|^{2}=\lim _{M \rightarrow \infty}\left|\frac{\zeta-z_{1}-2 M-2 n i}{\zeta-z_{1}+2 M+2-2 n i}\right|^{2}=1
\end{aligned}
$$

On the other hand, and because the double product

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m-1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2}
$$

is convergent, we can write

$$
\begin{aligned}
& \prod_{m \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m-1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2}=\lim _{M \rightarrow \infty} \prod_{m=-M}^{+M}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m-1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2} \\
= & \lim _{M \rightarrow \infty}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{M-1, n}}{\zeta-\overline{z_{1}}-\Omega_{-M, n}}\right|^{2}=\lim _{M \rightarrow \infty}\left|\frac{\zeta-\overline{z_{1}}-2 M+2-2 n i}{\zeta-\overline{z_{1}}+2 M-2 n i}\right|^{2}=1
\end{aligned}
$$

That gives

$$
\lim _{\substack{z \rightarrow z_{0} \in \partial_{1} T \\ z \in T}} G_{1}(z, \zeta)=0 .
$$

ii. on the segment $\partial_{2} T$ from 1 to i where :

$$
z=z_{1}, z_{2}=z_{3} .
$$

That gives

$$
\begin{aligned}
\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}} \\
\quad=\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z-\Omega_{m, n}}{\zeta-\bar{z}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta+z_{2}-\Omega_{m, n}}{\zeta+\overline{z_{2}}-\Omega_{m, n}}=1
\end{aligned}
$$

Thus

$$
\lim _{z \rightarrow z_{0} \in \partial_{2} T}^{z \in T} G_{1}(z, \zeta)=0 .
$$

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com
iii. on the segment $\partial_{3} T$ from i to 0 where :

$$
z_{3}=z, z_{2}=\overline{z_{2}}+2, z_{1}=\overline{z_{1}}+2
$$

We have

$$
\begin{gathered}
\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}}=\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z-\Omega_{m, n}}{\zeta-\bar{z}-\Omega_{m, n}}=1 \\
\frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}}=\frac{\zeta-\overline{z_{1}}-2-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-\overline{z_{2}}-2-\Omega_{m, n}} \\
=\frac{\zeta-\overline{z_{1}}-\Omega_{m+1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \zeta-\overline{z_{2}}-\Omega_{m, n} \\
\zeta-\overline{z_{2}}-\Omega_{m+1, n}
\end{gathered}
$$

The double products

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m+1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2}
$$

converges, so

$$
\begin{aligned}
& \prod_{m \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m+1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2}=\lim _{M \rightarrow \infty} \prod_{m=-M}^{+M}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{m+1, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}}\right|^{2} \\
= & \lim _{M \rightarrow \infty}\left|\frac{\zeta-\overline{z_{1}}-\Omega_{M+1, n}}{\zeta-\overline{z_{1}}-\Omega_{M, n}}\right|^{2}=\lim _{M \rightarrow \infty}\left|\frac{\zeta-\overline{z_{1}}-2 M-2-2 n i}{\zeta-\overline{z_{1}}-2 M-2 n i}\right|^{2}=1
\end{aligned}
$$

By using the same technic on the double products

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-\overline{z_{2}}-\Omega_{m+1, n}}\right|^{2}
$$

we obtain

$$
\underset{z \in T}{\lim _{z \rightarrow z_{0} \in \partial_{3} T} G_{1}(z, \zeta)=0}
$$

Lemma (3): For $z, \zeta \in T$ the symmetry relation

$$
G_{1}(z, \zeta)=G_{1}(\zeta, z)
$$

Holds.

Proof:

$$
\begin{gathered}
G_{1}(z, \zeta)=\prod_{m, n \in \mathbb{Z}}\left|\frac{\zeta-\bar{z}-\Omega_{m, n}}{\zeta-z-\Omega_{m, n}} \cdot \frac{\zeta-z_{1}-\Omega_{m, n}}{\zeta-\overline{z_{1}}-\Omega_{m, n}} \cdot \frac{\zeta-\overline{z_{2}}-\Omega_{m, n}}{\zeta-z_{2}-\Omega_{m, n}} \cdot \frac{\zeta-z_{3}-\Omega_{m, n}}{\zeta-\overline{z_{3}}-\Omega_{m, n}}\right|^{2} \\
=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\bar{\zeta}+\overline{\Omega_{m, n}}}{z-\zeta+\Omega_{m, n}} \cdot \frac{z_{1}-\zeta+\Omega_{m, n}}{\overline{z_{1}}-\zeta+\Omega_{m, n}} \cdot \frac{z_{2}-\bar{\zeta}+\overline{\Omega_{m, n}}}{z_{2}-\zeta+\Omega_{m, n}} \cdot \frac{z_{3}-\zeta+\Omega_{m, n}}{\overline{z_{3}}-\zeta+\Omega_{m, n}}\right|^{2}
\end{gathered}
$$

First, we have

$$
\prod_{m, n \in \mathbb{Z}}\left|\frac{z_{1}-\zeta+\Omega_{m, n}}{\overline{z_{1}}-\zeta+\Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{1+i-i \bar{z}-\zeta+\Omega_{m, n}}{1-i+i z-\zeta+\Omega_{m, n}}\right|^{2}
$$

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com

$$
\begin{gathered}
=\prod_{m, n \in \mathbb{Z}}\left|\frac{\bar{z}-1+i-i \zeta+i \Omega_{m, n}}{z-1-i+i \zeta-i \Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-1-i+i \bar{\zeta}-i \overline{\Omega_{m, n}}}{z-\zeta_{2}-2-\Omega_{-n, m}}\right|^{2} \\
=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta_{1}-\Omega_{n, m}}{z-\zeta_{2}-\Omega_{-n+1, m}}\right|^{2}
\end{gathered}
$$

where

$$
\begin{gathered}
-1-i+i \bar{\zeta}-i \overline{\Omega_{m, n}}=-(1+i-i \bar{\zeta})-i \overline{(2 m+2 n i)}=-\zeta_{1}-(2 n+2 m i) \\
=-\zeta_{1}-\Omega_{n, m} \\
z-1-i+i \zeta-i \Omega_{m, n}=z-(1+i-i \zeta)-i(2 m+2 n i) \\
=z-(2-2+1+i-i \zeta)-(-2 n+2 m i)=z-\left(2+\zeta_{2}\right)-(-2 n+2 m i) \\
=z-\zeta_{2}-(2-2 n+2 m i)=z-\zeta_{2}-\Omega_{-n+1, m}
\end{gathered}
$$

second, we have

$$
\begin{aligned}
& \prod_{m, n \in \mathbb{Z}}\left|\frac{z_{2}-\bar{\zeta}+\overline{\Omega_{m, n}}}{z_{2}-\zeta+\Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{-1+i-i z-\bar{\zeta}+\overline{\Omega_{m, n}}}{-1+i-i z-\zeta+\Omega_{m, n}}\right|^{2} \\
= & \prod_{m, n \in \mathbb{Z}}\left|\frac{z-1-i-i \bar{\zeta}+i \overline{\Omega_{m, n}}}{z-1-i-i \zeta+i \Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\left(\overline{\zeta_{2}}+2+2 i\right)+i \overline{\Omega_{m, n}}}{z-\left(\overline{\zeta_{1}}+2 i\right)+i \Omega_{m, n}}\right|^{2} \\
= & \prod_{m, n \in \mathbb{Z}}\left|\frac{z-\overline{\zeta_{2}}-(2+2 i-2 m i-2 n)}{z-\overline{\zeta_{1}}-(2 i+2 n-2 m i)}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\overline{\zeta_{2}}-\Omega_{-n+1,-m+1}}{z-\overline{\zeta_{1}}-\Omega_{n,-m+1}}\right|^{2}
\end{aligned}
$$

Third, we have

$$
\begin{aligned}
& \prod_{m, n \in \mathbb{Z}}\left|\frac{z_{3}-\zeta+\Omega_{m, n}}{\overline{z_{3}}-\zeta+\Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{-\bar{z}-\zeta+\Omega_{m, n}}{-z-\zeta+\Omega_{m, n}}\right|^{2} \\
= & \prod_{m, n \in \mathbb{Z}}\left|\frac{z+\bar{\zeta}-\overline{\Omega_{m, n}}}{z+\zeta-\Omega_{m, n}}\right|^{2}=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta_{3}-\Omega_{m,-n}}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right|^{2}
\end{aligned}
$$

Thus
$G_{1}(z, \zeta)=\Pi_{m, n \in \mathbb{z}}\left|\frac{z-\bar{\zeta}-\Omega_{-m, n}}{z-\zeta-\Omega_{-m,-n}} \cdot \frac{z-\zeta_{1}-\Omega_{n, m}}{z-\zeta_{2}-\Omega_{-n+1, m}} \cdot \frac{z-\overline{\zeta_{2}}-\Omega_{-n+1,-m+1}}{z-\overline{\zeta_{1}}-\Omega_{n,-m+1}} \cdot \frac{z-\zeta_{3}-\Omega_{m,-n}}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right|^{2}$.
Multiplying by the following double products

$$
\begin{gathered}
\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\bar{\zeta}-\Omega_{m, n}}{z-\bar{\zeta}-\Omega_{-m, n}}\right|^{2}=1, \prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta-\Omega_{-m,-n}}{z-\zeta-\Omega_{m, n}}\right|^{2}=1 \\
\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta_{1}-\Omega_{m, n}}{z-\zeta_{1}-\Omega_{n, m}}\right|^{2}=1, \prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta_{2}-\Omega_{-n+1, m}}{z-\zeta_{2}-\Omega_{m, n}}\right|^{2}=1 \\
\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\overline{\zeta_{2}}-\Omega_{m, n}}{z-\bar{\zeta}_{2}-\Omega_{-n+1,-m+1}}\right|^{2}=1, \prod_{m, n \in \mathbb{Z}}\left|\frac{z-\overline{\zeta_{1}}-\Omega_{n,-m+1}}{z-\overline{\zeta_{1}}-\Omega_{m, n}}\right|^{2}=1 \\
\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\zeta_{3}-\Omega_{m, n}}{z-\zeta_{3}-\Omega_{m,-n}}\right|^{2}=1
\end{gathered}
$$

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com
We obtain

$$
G_{1}(z, \zeta)=\prod_{m, n \in \mathbb{Z}}\left|\frac{z-\bar{\zeta}-\Omega_{m, n}}{z-\zeta-\Omega_{m, n}} \cdot \frac{z-\zeta_{1}-\Omega_{m, n}}{z-\overline{\zeta_{1}}-\Omega_{m, n}} \cdot \frac{z-\overline{\zeta_{2}}-\Omega_{m, n}}{z-\zeta_{2}-\Omega_{m, n}} \cdot \frac{z-\zeta_{3}-\Omega_{m, n}}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right|^{2}=G_{1}(\zeta, z)
$$

Theorem (2):

The Poisson kernel for T is given as
$P(z, \zeta)=\operatorname{Re} \sum_{m, n \in \mathbb{Z}}\left\{\begin{array}{cc}8 i\left[\frac{1}{z-\zeta-\Omega_{m, n}}-\frac{1}{z-\zeta_{1}-\Omega_{m, n}}+\frac{1}{z-\zeta_{2}-\Omega_{m, n}}\right] & \text { on } \partial_{1} T \\ 4 \sqrt{2}(1+i)\left[\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta-\Omega_{m, n}}-\frac{1}{z-\overline{\zeta_{3}}-\Omega_{m, n}}+\frac{1}{z-\zeta_{3}-\Omega_{m, n}}\right] & \text { on } \partial_{2} T . \\ 8\left[\frac{1}{z-\zeta-\Omega_{m, n}}-\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta_{1}-\Omega_{m, n}}-\frac{1}{z-\overline{\zeta_{2}}-\Omega_{m, n}}\right] & \text { on } \partial_{3} T\end{array}\right.$

Proof:

i. On $\partial_{1} T$ we have $\partial_{v} G_{1}(z, \zeta)=-2 \operatorname{Re}\left(i \partial_{z}\right) G_{1}(z, \zeta)$

$$
z=\bar{z}, z_{2}=z_{1}-2, z_{3}=-z
$$

Hence

$$
\begin{aligned}
& \partial_{v} G_{1}(z, \zeta)=-4 \operatorname{Re} \sum_{m, n \in \mathbb{Z}}\left[\frac{i}{\zeta-z-\Omega_{m, n}}-\frac{i}{\overline{\zeta-z-\overline{\Omega_{m, n}}}+} \frac{1}{\overline{\zeta-z_{1}-\Omega_{m, n}}}-\frac{1}{\zeta-\overline{z_{1}}-\Omega_{m, n}}++\frac{1}{\zeta-z_{2}-\Omega_{m, n}}-\frac{1}{\bar{\zeta}-z_{2}-\overline{\Omega_{m, n}}}+\frac{i}{\overline{\zeta-z_{3}-\Omega_{m, n}}}-\right. \\
&\left.\frac{i}{\zeta-\overline{z_{3}}-\Omega_{m, n}}\right] . \\
&=-4 \operatorname{Re} \sum_{m, n \in \mathbb{Z}}\left[\frac{2 i}{\zeta-z-\Omega_{m, n}}+\frac{1}{\overline{\zeta-z_{1}-\Omega_{m, n}}}-\frac{1}{\zeta-\overline{z_{1}}-\Omega_{m, n}}+\frac{1}{\zeta-z_{2}-\Omega_{m, n}}-\frac{1}{\bar{\zeta}-z_{2}-\overline{\Omega_{m, n}}}\right] .
\end{aligned}
$$

rewriting the last four terms as

$$
\begin{gathered}
\frac{1}{\overline{\zeta-z_{1}-\Omega_{m, n}}}-\frac{1}{\zeta-\overline{z_{1}}-\Omega_{m, n}}=\frac{i}{z-\zeta_{1}-\Omega_{n,-m}}-\frac{i}{z-\zeta_{2}-\Omega_{-n+1, m}} . \\
\frac{1}{\zeta-z_{2}-\Omega_{m, n}}-\frac{1}{\bar{\zeta}-z_{2}-\overline{\Omega_{m, n}}}=\frac{i}{z-\overline{\zeta_{2}}-\Omega_{-n+1,-m+1}}-\frac{i}{z-\overline{\zeta_{1}}-\Omega_{n,-m+1}} .
\end{gathered}
$$

where $\zeta_{1}=-i \bar{\zeta}+1+i \quad, \quad \zeta_{2}=-i \zeta-1+i$.
That's gives

$$
\partial_{v} G_{1}(z, \zeta)=-8 \operatorname{Re} \sum_{m, n \in \mathbb{Z}} i\left[-\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z-\zeta_{1}-\Omega_{m, n}}-\frac{1}{z-\zeta_{2}-\Omega_{m, n}}\right]
$$

ii. On $\partial_{2} T$ we have $\partial_{v} G_{1}(z, \zeta)=\left[\left(\frac{1+i}{\sqrt{2}}\right) \partial_{z}+\left(\frac{1-i}{\sqrt{2}}\right) \partial_{\bar{z}}\right] G_{1}(z, \zeta)$

$$
\begin{aligned}
& z=z_{1}, \quad z_{2}=z_{3} \\
& \qquad \partial_{z} G_{1}(z, \zeta)=2 \sum_{m, n \in \mathbb{Z}}\left[-\frac{1}{\overline{\zeta-z-\overline{\Omega_{m, n}}}+\frac{1}{\zeta-z-\Omega_{m, n}}-\frac{i}{\overline{\zeta-z_{1}-\Omega_{m, n}}}+\frac{i}{\zeta-\overline{z_{1}}-\Omega_{m, n}}-\frac{i}{\zeta-z_{2}-\Omega_{m, n}}++\frac{i}{\overline{\zeta-z_{2}-\overline{\Omega_{m, n}}}+\frac{1}{\zeta-z_{3}-\Omega_{m, n}}}-} \begin{array}{l}
\left.\frac{1}{\zeta-\overline{z_{3}}-\Omega_{m, n}}\right] .
\end{array} .\right.
\end{aligned}
$$

Hence

$$
\begin{gathered}
\left(\frac{1+i}{\sqrt{2}}\right) \partial_{z} G_{1}(z, \zeta)=\sqrt{2} \sum_{m, n \in \mathbb{Z}}\left[\frac{1+i}{z-\bar{\zeta}-\overline{\Omega_{m, n}}}+\frac{1-i}{\bar{z}-\zeta-\Omega_{m, n}}+\frac{-1+i}{\overline{z-\zeta-\Omega_{m, n}}}+\frac{-1-i}{z-\zeta-\Omega_{m, n}}+\frac{1-i}{\bar{z}+\zeta-\Omega_{m, n}}+\frac{1+i}{z+\bar{\zeta}-\overline{\Omega_{m, n}}}+\frac{-1-i}{z+\zeta-\Omega_{m, n}}+\right. \\
\left.\overline{\overline{z+\zeta-\Omega_{m, n}}}\right] \\
=2 \sqrt{2} \operatorname{Re} \sum_{m, n \in \mathbb{Z}}(1+i)\left[\frac{1+i}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z+\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z+\zeta-\Omega_{m, n}}\right]
\end{gathered}
$$

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com
That's gives

$$
\left(\frac{1+i}{\sqrt{2}}\right) \partial_{z} G_{1}(z, \zeta)=2 \sqrt{2} \operatorname{Re} \sum_{m, n \in \mathbb{Z}}(1+i)\left[\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z-\zeta_{3}-\Omega_{m, n}}--\frac{1}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right]
$$

where $\zeta_{3}=-\bar{\zeta}$.
Similarly

$$
\left(\frac{1-i}{\sqrt{2}}\right) \partial_{\bar{z}} G_{1}(z, \zeta)=2 \sqrt{2} \operatorname{Re} \sum_{m, n \in \mathbb{Z}}(1+i)\left[\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z-\zeta_{3}-\Omega_{m, n}}--\frac{1}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right] .
$$

So we obtain

$$
\partial_{v} G_{1}(z, \zeta)=\left[\left(\frac{1+i}{\sqrt{2}}\right) \partial_{z}+\left(\frac{1-i}{\sqrt{2}}\right) \partial_{\bar{z}}\right] G_{1}(z, \zeta)=4 \sqrt{2} \operatorname{Re} \sum_{m, n \in \mathbb{Z}}(1+i)\left[\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}--\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z-\zeta_{3}-\Omega_{m, n}}-\frac{1}{z-\overline{\zeta_{3}}-\Omega_{m, n}}\right] .
$$

iii. On $\partial_{3} T$ we have $\partial_{v} G_{1}(z, \zeta)=-2 \operatorname{Re}\left(\partial_{z}\right) G_{1}(z, \zeta)$
$z=z_{3}$
 $\left.\frac{1}{\zeta-\overline{Z_{3}}-\Omega_{m, n}}\right|^{2}$.

Rewriting

$$
\begin{gathered}
-\frac{i}{\overline{\zeta-z_{1}-\Omega_{m, n}}}+\frac{i}{\zeta-\overline{z_{1}}-\Omega_{m, n}}=-\frac{i}{-1+i-i z+\bar{\zeta}-\overline{\Omega_{m, n}}}+\frac{i}{-1+i-i z+\zeta-\Omega_{m, n}}=\frac{1}{z-\zeta_{1}-\Omega_{n, m}}++\frac{1}{\bar{z}-\overline{\zeta_{1}}-\Omega_{m, n}} . \\
\frac{i}{\bar{\zeta}-z_{2}-\overline{\Omega_{m, n}}}-\frac{i}{\zeta-z_{2}-\Omega_{m, n}}=\frac{i}{i z+1-i+\bar{\zeta}-\overline{\Omega_{m, n}}}-\frac{i}{i z+1-i+\zeta-\Omega_{m, n}}=\frac{1}{z-\overline{\zeta_{2}}-\Omega_{-n+1,-m+1}}++\frac{1}{\bar{z}-\zeta_{2}-\Omega_{-n, m-1}} .
\end{gathered}
$$

where $\zeta_{1}=-i \bar{\zeta}+1+i, \quad \zeta_{2}=-i \zeta-1+i$
Hence

$$
\partial_{v} G_{1}(z, \zeta)=-8 \operatorname{Re} \sum_{m, n \in \mathbb{Z}}\left|\frac{1}{z-\bar{\zeta}-\Omega_{m, n}}-\frac{1}{z-\zeta-\Omega_{m, n}}+\frac{1}{z-\zeta_{1}-\Omega_{m, n}}+\frac{1}{z-\overline{\zeta_{2}}-\Omega_{m, n}}\right|^{2} .
$$

Noticing that

$$
z_{2}=-\overline{z_{1}}, \quad z_{3}=-\bar{z}
$$

We can rewriting the function $G_{1}(z, \zeta)$ as

$$
G_{1}(z, \zeta)=\prod_{m, n \in \mathbb{Z}}\left|\frac{\left[\left(\zeta-\Omega_{m, n}\right)^{2}-\bar{z}^{2}\right]^{2} \cdot\left[\left(\zeta-\Omega_{m, n}\right)^{2}-z_{1}^{2}\right]^{2}}{\left[\left(\zeta-\Omega_{m, n}\right)^{2}-z^{2}\right]^{2} \cdot\left[\left(\zeta-\Omega_{m, n}\right)^{2}-\bar{z}_{1}^{2}\right]^{2}}\right|^{2} .
$$

First, we have

$$
\begin{equation*}
\left[\left(\zeta-\Omega_{m, n}\right)^{2}-\bar{z}^{2}\right]^{2} \cdot\left[\left(\zeta-\Omega_{m, n}\right)^{2}-z_{1}^{2}\right]^{2}=\left(\zeta-\Omega_{m, n}\right)^{4}-\left(\bar{z}^{2}+z_{1}^{2}\right)\left(\zeta-\Omega_{m, n}\right)^{2}++\left(\bar{z} \cdot z_{1}\right)^{2} . \tag{*}
\end{equation*}
$$

on the other hand, we have

$$
\bar{z}^{2}+z_{1}^{2}=2\left(z_{1}+\bar{z}-1\right) .
$$

Hence we can rewrite (${ }^{*}$)

$$
\begin{equation*}
\left(\zeta-\Omega_{m, n}\right)^{4}-2\left(z_{1}+\bar{z}-1\right)\left(\zeta-\Omega_{m, n}\right)^{2}+\left(\bar{z} \cdot z_{1}\right)^{2}=\left[\left(\zeta-\Omega_{m, n}\right)^{2}-z_{1}-\bar{z}+1\right]^{2}++\left(\bar{z} \cdot z_{1}\right)^{2}-\left(z_{1}+\bar{z}-1\right)^{2} . \tag{**}
\end{equation*}
$$

Fixing (**) we obtain

International Journal of Novel Research in Physics Chemistry \& Mathematics

Vol. 5, Issue 2, pp: (9-18), Month: May - August 2018, Available at: www.noveltyjournals.com

$$
\left[\left(\zeta-\Omega_{m, n}\right)^{2}-(1-i) \bar{z}-i\right]^{2}-(\bar{z}+i)^{2}(\bar{z}-1)^{2} .
$$

Similarly, we have

$$
\left[\left(\zeta-\Omega_{m, n}\right)^{2}-z^{2}\right]^{2} \cdot\left[\left(\zeta-\Omega_{m, n}\right)^{2}-\bar{z}_{1}^{2}\right]^{2}=\left[\left(\zeta-\Omega_{m, n}\right)^{2}-(1+i) z+i\right]^{2}--(z-i)^{2}(z-1)^{2}
$$

Finally, the harmonic green function for T is represented as the following

$$
G_{1}(z, \zeta)=\prod_{m, n \in \mathbb{Z}}\left|\frac{\left[\left(\bar{\zeta}-\Omega_{m, n}\right)^{2}-(1+i)_{z+i}\right]^{2}-(z-i)^{2}(z-1)^{2}}{\left[\left(\zeta-\Omega_{m, n}\right)^{2}-(1+i) z+i\right]^{2}-(z-i)^{2}(z-1)^{2}}\right|^{2} .
$$

REFERENCES

[1] Heinrich Begehr, Tatyana Vaitekhovich. How to find harmonic Green functions in the plane. Complex variables and elliptic equations. 2011; 56(12): p. 1169 - 1181.
[2] Heinrich Begehr, Tatyana Vaitekhovich. Harmonic boundary value problems in half disc and half ring, Funct. Approx. 2009;40: p. 251 - 282, part 2.
[3] Heinrich Begehr, Tatyana Vaitekhovich. Green functions, reflections, and plane parqueting. Eurasian Math. 2010; 1(1): p. 17 - 31.
[4] Bibinur Shupeyeva. Some Basic Boundary Value Problems for Complex Partial Differential Equations in Quarter Ring and Half Hexagon[dissertation]. FU Berlin; (2013).
[5] Bibinur Shupeyeva. Dirichlet Problem for Complex Poisson Equation in a Half Hexagon Domain. Journal of Complex Analysis. Vol 2016,(2016).

